Finsler and Lagrange Geometries in Einstein and String Gravity
نویسنده
چکیده
We review the current status of Finsler–Lagrange geometry and generalizations. The goal is to aid non–experts on Finsler spaces, but physicists and geometers skilled in general relativity and particle theories, to understand the crucial importance of such geometric methods for applications in modern physics. We also would like to orient mathematicians working in generalized Finsler and Kähler geometry and geometric mechanics how they could perform their results in order to be accepted by the community of ”orthodox” physicists. Although the bulk of former models of Finsler–Lagrange spaces where elaborated on tangent bundles, the surprising result advocated in our works is that such locally anisotropic structures can be modelled equivalently on Riemann–Cartan spaces, even as exact solutions in Einstein and/or string gravity, if nonholonomic distributions and moving frames of references are introduced into consideration. We also propose a canonical scheme when geometrical objects on a (pseudo) Riemannian space are nonholonomically deformed into generalized Lagrange, or Finsler, configurations on the same manifold. Such canonical transforms are defined by the coefficients of a prime metric and generate target spaces as Lagrange structures, their models of almost Hermitian/ Kähler, or nonholonomic Riemann spaces. Finally, we consider some classes of exact solutions in string and Einstein gravity modelling Lagrange–Finsler structures with solitonic pp–waves and speculate on their physical meaning.
منابع مشابه
Finsler–Lagrange Geometries and Standard Theories in Physics: New Methods in Einstein and String Gravity
In this article, we review the current status of Finsler–Lagrange geometry and generalizations. The goal is to aid non–experts on Finsler spaces, but physicists and geometers skilled in general relativity and particle theories, to understand the crucial importance of such geometric methods for applications in modern physics. We also would like to orient mathematicians working in generalized Fin...
متن کاملNonholonomic Ricci Flows: I. Riemann Metrics and Lagrange–Finsler Geometry
In this paper, it is elaborated the theory the Ricci flows for manifolds enabled with nonintegrable (nonholonomic) distributions defining nonlinear connection structures. Such manifolds provide a unified geometric arena for nonholonomic Riemannian spaces, Lagrange mechanics, Finsler geometry, and various models of gravity (the Einstein theory and string, or gauge, generalizations). We follow th...
متن کاملDifferential Geometry - Dynamical Systems
1 We develop the method of anholonomic frames with associated nonlinear connection (in brief, N–connection) structure and show explicitly how geometries with local anisotropy (various type of Finsler–Lagrange–Cartan–Hamilton spaces) can be modelled on the metric–affine spaces. There are formulated the criteria when such generalized Finsler metrics are effectively defined in the Einstein, telepa...
متن کاملEinstein Gravity , Lagrange – Finsler Geometry , and Nonsymmetric Metrics
We formulate an approach to the geometry of Riemann–Cartan spaces provided with nonholonomic distributions defined by generic off-diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart–Moffat and Finsler–Lag...
متن کاملGravity as a Nonholonomic Almost Kähler
A geometric procedure is elaborated for transforming (pseudo) Riemanian metrics and connections into canonical geometric objects (metric and nonlinear and linear connections) for effective Lagrange, or Finsler, geometries which, in their turn, can be equivalently represented as almost Kähler spaces. This allows us to formulate an approach to quantum gravity following standard methods of deforma...
متن کامل